شروع کار با جولیا | Getting Started Julia
دوشنبه, ۳ مهر ۱۳۹۶، ۱۱:۰۸ ق.ظ
توجه: از این به بعد مطالب مربوط به زبان برنامه نویسی جولیا ( julia ) را در وب سایت شخصی خودم و با نظم بیشتر و پیگیری جدی تری قرار می گیرد. آدرس سایت شخصی بنده : https://www.achitsaz.ir
نصب جولیا ساده است، چه با استفاده از باینری های قبل از کامپایل شده و یا کامپایل از منبع. با دنبال کردن دستورالعمل ها در اینجا جولیا را دانلود و نصب کنید.
ساده ترین راه یادگیری جولیا، اجرا و کارکردن در محیط تعاملی جولیا (که جزو REPLها محسوب می شود) است. جولیا را با دوبار کلیک کردن یا از طریق cmd اجرا کنید. محیط زیر رو مشاهده می کنید:
_
_ _ _(_)_ | A fresh approach to technical computing
(_) | (_) (_) | Documentation: https://docs.julialang.org
_ _ _| |_ __ _ | Type "?help" for help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 0.6.0 (2017-06-19 13:05 UTC)
_/ |\__'_|_|_|\__'_| | Official http://julialang.org/ release
|__/ | x86_64-w64-mingw32
julia> 1 + 2
3
julia> ans
3
برای خروج از محیط تعاملی دکمه ctrl را همزمان با D فشار دهید یا تایپ کنیدquit()
و enter را فشار دهید.
زمانی که محیط تعاملی را اجرا میکنید، خطی فعال به نام julia
منتظر ورودی از شما می ماند. زمانی که یک عبارت قابل پردازش برای جولیا را جلوی خط فعال تایپ کرده و enter را فشار دهید، جولیا برای شما نتیجه را پردازش کرده و در زیر خط فعال نمایش می دهد. متغیر ans
به مقدار آخرین نتیجه ارزیابی شده محدود شده است که آیا نشان داده شده یا نه. متغیر ans
فقط در جلسات تعاملی (REPL) محدود می شود، نه زمانی که کد جولیا به روش های دیگر اجرا می شود.
برای ارزیابی عبارات نوشته شده در یک فایل منبع file.jl
، عبارت include("file.jl")
را به خط فعال ارسال کنید. (این فایل را باید قبلا در اسناد جولیا در مسیر نصب جولیا ایجاد کرده باشید.)
حالا کمی با مبانی برنامه نویسی در جولیا آشناتون میکنم:
# توضیحات یک خطی با علامت هشتگ '#' شروع می شوند.
#= توضیحات چندخطی را می توان با
نوشتن '=#' قبل از توضیحات و نوشتن '#='
بعد از پایان توضیحات است.
=#
###################################################### 1.انواع داده های اولیه و اپراتورها####################################################
# Everything in Julia is an expression.
# There are several basic types of numbers.
3 # => 3 (Int64)
3.2 # => 3.2 (Float64)
2 + 1im # => 2 + 1im (Complex{Int64})
2//3 # => 2//3 (Rational{Int64})
# All of the normal infix operators are available.
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7.0
5 / 2 # => 2.5 # dividing an Int by an Int always results in a Float
div(5, 2) # => 2 # for a truncated result, use div
5 \ 35 # => 7.0
2 ^ 2 # => 4 # power, not bitwise xor
12 % 10 # => 2
# Enforce precedence with parentheses
(1 + 3) * 2 # => 8
# Bitwise Operators
~2 # => -3 # bitwise not
3 & 5 # => 1 # bitwise and
2 | 4 # => 6 # bitwise or
2 $ 4 # => 6 # bitwise xor
2 >>> 1 # => 1 # logical shift right
2 >> 1 # => 1 # arithmetic shift right
2 << 1 # => 4 # logical/arithmetic shift left
# You can use the bits function to see the binary representation of a number.
bits(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
bits(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
# Boolean values are primitivestruefalse
# Boolean operators
!true # => false
!false # => true
1 == 1 # => true
2 == 1 # => false
1 != 1 # => false
2 != 1 # => true
1 < 10 # => true
1 > 10 # => false
2 <= 2 # => true
2 >= 2 # => true
# Comparisons can be chained
1 < 2 < 3 # => true
2 < 3 < 2 # => false
# Strings are created with ""This is a string."
# Julia has several types of strings, including ASCIIString and UTF8String.# More on this in the Types section.
# Character literals are written with ''a'
# Some strings can be indexed like an array of characters
"This is a string"[1] # => 'T' # Julia indexes from 1
# However, this is will not work well for UTF8 strings,# so iterating over strings is recommended (map, for loops, etc).
# $ can be used for string interpolation:
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
# You can put any Julia expression inside the parentheses.
# Another way to format strings is the printf macro.
@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000
# Printing is easy
println("I'm Julia. Nice to meet you!")
# String can be compared lexicographically
"good" > "bye" # => true
"good" == "good" # => true
"1 + 2 = 3" == "1 + 2 = $(1+2)" # => true
###################################################### 2. Variables and Collections####################################################
# You don't declare variables before assigning to them.
some_var = 5 # => 5
some_var # => 5
# Accessing a previously unassigned variable is an errortry
some_other_var # => ERROR: some_other_var not defined
catch e
println(e)
end
# Variable names start with a letter or underscore.# After that, you can use letters, digits, underscores, and exclamation points.
SomeOtherVar123! = 6 # => 6
# You can also use certain unicode characters
☃ = 8 # => 8
# These are especially handy for mathematical notation
2 * π # => 6.283185307179586
# A note on naming conventions in Julia:## * Word separation can be indicated by underscores ('_'), but use of# underscores is discouraged unless the name would be hard to read# otherwise.## * Names of Types begin with a capital letter and word separation is shown# with CamelCase instead of underscores.## * Names of functions and macros are in lower case, without underscores.## * Functions that modify their inputs have names that end in !. These# functions are sometimes called mutating functions or in-place functions.
# Arrays store a sequence of values indexed by integers 1 through n:
a = Int64[] # => 0-element Int64 Array
# 1-dimensional array literals can be written with comma-separated values.
b = [4, 5, 6] # => 3-element Int64 Array: [4, 5, 6]
b = [4; 5; 6] # => 3-element Int64 Array: [4, 5, 6]
b[1] # => 4
b[end] # => 6
# 2-dimensional arrays use space-separated values and semicolon-separated rows.
matrix = [1 2; 3 4] # => 2x2 Int64 Array: [1 2; 3 4]
# Arrays of a particular Type
b = Int8[4, 5, 6] # => 3-element Int8 Array: [4, 5, 6]
# Add stuff to the end of a list with push! and append!
push!(a,1) # => [1]
push!(a,2) # => [1,2]
push!(a,4) # => [1,2,4]
push!(a,3) # => [1,2,4,3]
append!(a,b) # => [1,2,4,3,4,5,6]
# Remove from the end with pop
pop!(b) # => 6 and b is now [4,5]
# Let's put it back
push!(b,6) # b is now [4,5,6] again.
a[1] # => 1 # remember that Julia indexes from 1, not 0!
# end is a shorthand for the last index. It can be used in any# indexing expression
a[end] # => 6
# we also have shift and unshift
shift!(a) # => 1 and a is now [2,4,3,4,5,6]
unshift!(a,7) # => [7,2,4,3,4,5,6]
# Function names that end in exclamations points indicate that they modify# their argument.
arr = [5,4,6] # => 3-element Int64 Array: [5,4,6]
sort(arr) # => [4,5,6]; arr is still [5,4,6]
sort!(arr) # => [4,5,6]; arr is now [4,5,6]
# Looking out of bounds is a BoundsErrortry
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
catch e
println(e)
end
# Errors list the line and file they came from, even if it's in the standard# library. If you built Julia from source, you can look in the folder base# inside the julia folder to find these files.
# You can initialize arrays from ranges
a = [1:5;] # => 5-element Int64 Array: [1,2,3,4,5]
# You can look at ranges with slice syntax.
a[1:3] # => [1, 2, 3]
a[2:end] # => [2, 3, 4, 5]
# Remove elements from an array by index with splice!
arr = [3,4,5]
splice!(arr,2) # => 4 ; arr is now [3,5]
# Concatenate lists with append!
b = [1,2,3]
append!(a,b) # Now a is [1, 2, 3, 4, 5, 1, 2, 3]
# Check for existence in a list with in
in(1, a) # => true
# Examine the length with length
length(a) # => 8
# Tuples are immutable.
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
tup[1] # => 1
try:
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
println(e)
end
# Many list functions also work on tuples
length(tup) # => 3
tup[1:2] # => (1,2)
in(2, tup) # => true
# You can unpack tuples into variables
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
# Tuples are created even if you leave out the parentheses
d, e, f = 4, 5, 6 # => (4,5,6)
# A 1-element tuple is distinct from the value it contains
(1,) == 1 # => false
(1) == 1 # => true
# Look how easy it is to swap two values
e, d = d, e # => (5,4) # d is now 5 and e is now 4
# Dictionaries store mappings
empty_dict = Dict() # => Dict{Any,Any}()
# You can create a dictionary using a literal
filled_dict = Dict("one"=> 1, "two"=> 2, "three"=> 3)
# => Dict{ASCIIString,Int64}
# Look up values with []
filled_dict["one"] # => 1
# Get all keys
keys(filled_dict)
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])# Note - dictionary keys are not sorted or in the order you inserted them.
# Get all values
values(filled_dict)
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])# Note - Same as above regarding key ordering.
# Check for existence of keys in a dictionary with in, haskey
in(("one" => 1), filled_dict) # => true
in(("two" => 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
# Trying to look up a non-existent key will raise an errortry
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
catch e
println(e)
end
# Use the get method to avoid that error by providing a default value# get(dictionary,key,default_value)
get(filled_dict,"one",4) # => 1
get(filled_dict,"four",4) # => 4
# Use Sets to represent collections of unordered, unique values
empty_set = Set() # => Set{Any}()
# Initialize a set with values
filled_set = Set([1,2,2,3,4]) # => Set{Int64}(1,2,3,4)
# Add more values to a set
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
# Check if the values are in the set
in(2, filled_set) # => true
in(10, filled_set) # => false
# There are functions for set intersection, union, and difference.
other_set = Set([3, 4, 5, 6]) # => Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
setdiff(Set([1,2,3,4]),Set([2,3,5])) # => Set{Int64}(1,4)
####################################################
## 3. Control Flow
####################################################
# Let's make a variable
some_var = 5
# Here is an if statement. Indentation is not meaningful in Julia.
if some_var > 10
println("some_var is totally bigger than 10.")
elseif some_var < 10 # This elseif clause is optional.
println("some_var is smaller than 10.")
else # The else clause is optional too.
println("some_var is indeed 10.")
end# => prints "some var is smaller than 10"
# For loops iterate over iterables.
# Iterable types include Range, Array, Set, Dict, and AbstractString.
for animal=["dog", "cat", "mouse"]
println("$animal is a mammal")
# You can use $ to interpolate variables or expression into strings
end# prints:# dog is a mammal# cat is a mammal# mouse is a mammal
# You can use 'in' instead of '='.
for animal in ["dog", "cat", "mouse"]
println("$animal is a mammal")
end# prints:# dog is a mammal# cat is a mammal# mouse is a mammal
for a in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal")
println("$(a[1]) is a $(a[2])")
end# prints:# dog is a mammal# cat is a mammal# mouse is a mammal
for (k,v) in Dict("dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal")
println("$k is a $v")
end# prints:# dog is a mammal# cat is a mammal# mouse is a mammal
# While loops loop while a condition is true
x = 0
while x < 4
println(x)
x += 1 # Shorthand for x = x + 1
end# prints:# 0# 1# 2# 3
# Handle exceptions with a try/catch blocktry
error("help")
catch e
println("caught it $e")
end# => caught it ErrorException("help")
####################################################
## 4. Functions
####################################################
# The keyword 'function' creates new functions#function name(arglist)# body...#end
function add(x, y)
println("x is $x and y is $y")
# Functions return the value of their last statement
x + y
end
add(5, 6) # => 11 after printing out "x is 5 and y is 6"
# Compact assignment of functions
f_add(x, y) = x + y # => "f (generic function with 1 method)"
f_add(3, 4) # => 7
# Function can also return multiple values as tuple
f(x, y) = x + y, x - y
f(3, 4) # => (7, -1)
# You can define functions that take a variable number of# positional arguments
function varargs(args...)
return args
# use the keyword return to return anywhere in the function
end# => varargs (generic function with 1 method)
varargs(1,2,3) # => (1,2,3)
# The ... is called a splat.# We just used it in a function definition.# It can also be used in a function call,# where it will splat an Array or Tuple's contents into the argument list.
add([5,6]...) # this is equivalent to add(5,6)
x = (5,6) # => (5,6)
add(x...) # this is equivalent to add(5,6)
# You can define functions with optional positional arguments
function defaults(a,b,x=5,y=6)
return "$a $b and $x $y"
end
defaults('h','g') # => "h g and 5 6"
defaults('h','g','j') # => "h g and j 6"
defaults('h','g','j','k') # => "h g and j k"
try
defaults('h') # => ERROR: no method defaults(Char,)
defaults() # => ERROR: no methods defaults()
catch e
println(e)
end
# You can define functions that take keyword arguments
function keyword_args(;k1=4,name2="hello") # note the ;
return Dict("k1"=>k1,"name2"=>name2)
end
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
keyword_args() # => ["name2"=>"hello","k1"=>4]
# You can combine all kinds of arguments in the same function
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
println("normal arg: $normal_arg")
println("optional arg: $optional_positional_arg")
println("keyword arg: $keyword_arg")
end
all_the_args(1, 3, keyword_arg=4)
# prints:# normal arg: 1# optional arg: 3# keyword arg: 4
# Julia has first class functions
function create_adder(x)
adder = function (y)
return x + y
end
return adder
end
# This is "stabby lambda syntax" for creating anonymous functions
(x -> x > 2)(3) # => true
# This function is identical to create_adder implementation above.
function create_adder(x)
y -> x + y
end
# You can also name the internal function, if you want
function create_adder(x)
function adder(y)
x + y
end
adder
end
add_10 = create_adder(10)
add_10(3) # => 13
# There are built-in higher order functions
map(add_10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# We can use list comprehensions for nicer maps
[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
###################################################### 5. Types####################################################
# Julia has a type system.# Every value has a type; variables do not have types themselves.# You can use the `typeof` function to get the type of a value.
typeof(5) # => Int64
# Types are first-class values
typeof(Int64) # => DataType
typeof(DataType) # => DataType
# DataType is the type that represents types, including itself.
# Types are used for documentation, optimizations, and dispatch.# They are not statically checked.
# Users can define types# They are like records or structs in other languages.# New types are defined using the `type` keyword.
# type Name# field::OptionalType# ...# end
type Tiger
taillength::Float64
coatcolor # not including a type annotation is the same as `::Any`
end
# The default constructor's arguments are the properties# of the type, in the order they are listed in the definition
tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange")
# The type doubles as the constructor function for values of that type
sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire")
# These struct-style types are called concrete types# They can be instantiated, but cannot have subtypes.# The other kind of types is abstract types.
# abstract Name
abstract Cat # just a name and point in the type hierarchy
# Abstract types cannot be instantiated, but can have subtypes.# For example, Number is an abstract type
subtypes(Number) # => 2-element Array{Any,1}:
# Complex{T<:Real}
# Real
subtypes(Cat) # => 0-element Array{Any,1}
# AbstractString, as the name implies, is also an abstract type
subtypes(AbstractString) # 8-element Array{Any,1}:
# Base.SubstitutionString{T<:AbstractString}
# DirectIndexString
# RepString
# RevString{T<:AbstractString}
# RopeString
# SubString{T<:AbstractString}
# UTF16String
# UTF8String
# Every type has a super type; use the `super` function to get it.
typeof(5) # => Int64
super(Int64) # => Signed
super(Signed) # => Integer
super(Integer) # => Real
super(Real) # => Number
super(Number) # => Any
super(super(Signed)) # => Real
super(Any) # => Any
# All of these type, except for Int64, are abstract.
typeof("fire") # => ASCIIString
super(ASCIIString) # => DirectIndexString
super(DirectIndexString) # => AbstractString
# Likewise here with ASCIIString
# <: is the subtyping operator #
- ۹۶/۰۷/۰۳
اگر قبلا در بیان ثبت نام کرده اید لطفا ابتدا وارد شوید، در غیر این صورت می توانید ثبت نام کنید.